

Background

History of some recent activities

- GaN HEMTs / MMICs have not yet been "officially" space qualified
 - A number of Class A & B missions have targeted GaN power HEMT technology for usage in the next few years
 - Exciting opportunities for applications such as SSPAs, High Intercept LNAs
- Existing techniques for accelerated testing and qual (as for GaAs) are inadequate:
 - GaN may not have a single dominant failure mode
 - Temperatures/voltages/power densities are generally much higher
 - DC stressing alone may not be sufficient
- In early 2017 an Aerospace draft document was written
 - ATR-2017-01782 "DRAFT Guidelines for Space Qualification of GaN HEMT Technology" J. Scarpulla & C. Gee, May 23, 2017
- A working group was established to mature this document
 - 7 months of weekly meetings
 - Approx. 85 members / interested parties
 - Extensive edits and revisions were made based on many inputs

Document is now in release cycle: TOR-2018-00691 "Guidelines for Space Qualification of GaN HEMT Technologies" J. Scarpulla, C. Gee

Is GaN "different"?

Well, yes...

- We cannot qualify GaN devices in a similar way to previous III-V semiconductors (GaAs, InP)
 - Multiple failure mechanisms may exist
 - (they exist in GaAs too, but the lower voltages/currents/power levels preclude them)
 - Gate sinking no longer remains as dominant
- In our new document we focus on:
 - microwave/power HEMTs and MMICs
 - Conventional Schottky gates
 - No enhancement mode devices (very different physics)
 - Typically (but not limited to) SiC substrates
- Qual methods
 - Intrinsic failure modes
 - DC multi-temperature lifetests, at multiple bias points
 - Step-stress / constant stress
 - RF-driven tests
 - CW/pulsed
 - TLYF (test like you fly)

Multiple modes demand multiple tests

Some Failure Mechanisms in GaN Power HEMTs

Reliability Concerns:

Gate diffusion, chemical reactions

Source/drain ohmic metal-semiconductor reactions

Pits/cracks – moisture / mechanical stress (IPE**)

Charging/traps- virtual gate (VG)

Dislocation defects (throughout)

Point defects (esp. at gate-drain edge)

^{*}Source Connected Field Plate

^{**}Inverse Piezoelectric Effect

^{***}Two Dimensional Electron Gas

Stressing regimes

DC stressing at four operating points (Q-points)

- Depending upon the RF load figure different failure modes are manifested
- Devote at least two temperatures to each Q-point

Multiplicity of Intrinsic Failure Modes

- DC lifetest data taken at operating point Q₁
 - predicts $E_A = 1.86 \text{eV}$, $MTTF = 5 \times 10^6$ hrs at mission temperature 250 °C.
- CAVEATs:
 - Q₂ Q₄ give much shorter MTTFs
 - A "sneak" low E_A mechanism of 0.5eV could exist short MTTF

Guidelines are provided for comprehensive test campaigns

Temperature Errors Affect Reliability Predictions

Temperatures are much higher in GaN power HEMTs

- Methods of temperature measurement guidelines provided
 - IR thermography
 - Raman scattering
 - Bulk direct
 - Surface with nanoparticle sprinkling
 - Thermoreflectance
 - Gate end-end resistance measurement

 Translation from stress power level to usage power level using Rth can introduce additional temperature errors and reliability prediction uncertainties

Temperature errors have varied effects- guidelines are provided

Defects

Guidance provided on reliability assessment of process defects

- Example defects in MIMCAPs
 - MIMCAPs in GaN technology subjected to much higher voltage than in previous GaAs technology – MIMCAPs may dominate failure rates

Guidance provided on MIMCAP defect density testing and reliability prediction

More Recommendations & Test Protocols

Topics to consider for space qualification of GaN

- Robustness
 - SOA (safe operating area)
 - Gate burnout
 - RF burnout
 - ESD
 - Temperature cycling
 - Power cycling
 - Off-state voltage screening
- Intrinsic Reliability
 - DC lifetesting (4 Q-points)
 - RF lifetesting
 - Step stressing
 - TLYF (<u>T</u>est <u>L</u>ike <u>Y</u>ou <u>F</u>ly)
 - Thin film resistors
 - Electromigration
- Environmental Effects
 - Moisture sensitivity
 - Hydrogen sensitivity
 - Air Sensitivity

- Extrinsic Defects
 - MIMCAPs
 - Gate Defects
 - Airbridge Defects
 - Backside Via defects
- Mechanical
 - Backside metal adhesion
 - Bondpull tests
 - Die shear tests
 - Step Coverage
 - Low Frequency Oscillations
- Radiation Effects
 - Total Ionizing Dose
 - Dose Rate
 - Singe Event Effects
 - Displacement Damage

Guidelines are provided on these topics and more

Conclusion

- A peer-reviewed and vetted space qualification methodology for GaN power HEMTs and MMICs is now available
- TOR-2018-00691 "Guidelines for Space Qualification of GaN HEMT Technologies" J. Scarpulla, C. Gee
- For more information please contact
 - john.scarpulla@aero.org
 - caroline.gee@aero.org

THANK YOU!